首页> 外文OA文献 >Efficient shift-variant image restoration using deformable filtering (Part II): PSF field estimation
【2h】

Efficient shift-variant image restoration using deformable filtering (Part II): PSF field estimation

机译:使用可变形滤波的高效平移图像恢复(第二部分):PSF场估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a two-step technique for estimating the point spread function (PSF) field from a single star field image affected by shift-variant (SV) blur. The first step estimates the best-fitting PSF for each block of an overlapping block grid. We propose a local image model consisting of a pattern (the PSF) being replicated at arbitrary locations and with arbitrary weights. We follow an efficient alternate marginal optimization approach for estimating (1) the most likely pattern, and (2) the locations where it appears in the block, with sub-pixel accuracy. The second step uses linear dimensionality reduction and nonlinear spatial filtering for estimating the entire PSF field from the grid of local PSF estimates. We simulate SV blur on realistic synthetic star fields to assess the accuracy of the method for this kind of images, for different blurs, star densities, and Poisson counts. The results indicate a moderately low error and very robust behavior against noise and artifacts. We also apply our method to real astronomical images, and demonstrate that the method provides relevant information about the underlying structure of the actual telescope and atmosphere PSF fields. We use a variant of the method proposed in Part I to compensate for the observed blur. © 2012 Springer
机译:我们提出了一种两步技术,用于从受移位变量(SV)模糊影响的单个星场图像中估计点扩展函数(PSF)场。第一步,为重叠块网格的每个块估计最适合的PSF。我们提出了一个本地图像模型,该模型由在任意位置以任意权重复制的图案(PSF)组成。我们遵循一种有效的替代边际优化方法,以亚像素精度估算(1)最可能的图案,以及(2)图像出现在块中的位置。第二步使用线性降维和非线性空间滤波从本地PSF估计值的网格估计整个PSF字段。我们在逼真的合成星场上模拟SV模糊,以评估这种图像在不同模糊,星密度和泊松计数下的准确性。结果表明,适度较低的误差以及对噪声和伪像的非常鲁棒的行为。我们还将我们的方法应用于真实的天文图像,并证明该方法提供了有关实际望远镜和大气PSF场的基础结构的相关信息。我们使用第一部分中提出的方法的一种变体来补偿观察到的模糊。分级为4 +©2012 Springer

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号